Group polarization due to rhetorically-induced asymmetry and heuristic issue substitution

Michael Gabbay,1* Zane Kelly,1 Justin Reedy,2 John Gastil3

- 1 University of Washington, Seattle, WA
- 2 University of Oklahoma, Norman, OK
- B Pennsylvania State University, State College, PA gabbay@uw.edu

Funding for this work was provided by DTRA and ONR under grants HDTRA1-10-1-0075 and N00014-15-1-2549

Overview

- Group polarization effect causes shifts toward extreme
- Results of experiment on NFL betting in groups challenges standard polarization theories
- New theoretical mechanism for group polarization
- Rhetorically-Induced Asymmetry (RIA) facilitates majority formation at extremes
- Issue substitution shifts reference point
- New opinion network dynamics model: Accept-Shift-Constrict (ASC)
- Uncertainty dynamics allows for proximate majorities to emerge and endure
- Distinction between opinion and how opinion discussed (rhetoric)
- Combination allows for groups to shift toward extreme without giving extremists higher network weights as done in typical modeling approach
- ASC model (and simpler RPM model) in qualitative and quantitative agreement with experiment

Group Polarization Effect & Gaps

- Group discussion among members on same side of issue shifts their opinions toward more extreme direction
- Post-discussion opinion mean greater than pre-discussion mean
- Originally observed for greater risk acceptance "risky shift effect"
- Two main explanations...
- Information sharing: members exposed to new arguments supporting their side of issue
- Norm-induced: members seek to look more favorable than others in direction of norm
- Reference point under-theorized
 - Hampers application to natural settings
- Not integrated with stronger, concurrent attitude change phenomena majority influence, consensus pressure
- Cannot make predictions for specific initial opinion distributions
- Little experimental research on effects of network structure
- No effect of topology (Friedkin 1999)

Experiment

- Triads discuss upcoming NFL game via chat interface
- Subjects asked to wager with respect to point spread
- 197 groups from Amazon Mechanical Turk
- Winnings donated to charity

Experiment Results

Condition	n	$\bar{\delta}$ (\$)	SE (\$)	$p(\bar{\delta})$	$\Delta \bar{\delta}$ (\$)	$p(\Delta\bar{\delta})$	t(df)
Favorite	104	1.44***	0.19	9×10^{-12}	1.25***	.00008	4.10 (118.7)
Underdog	56	$\bigcirc 0.19$	0.24	.43			,
Fav./High	60	1.82***	0.26	4×10^{-9}	0.89*	.014	2.50 (101.4)
Fav./Low	44	0.92***	0.24	.0004			
Fav./Comp.	37	2.10***	0.30	3×10^{-8}	1.02**	.008	2.73 (76.8)
Fav./Chain	67	1.07***	0.23	.00001			
Und./High	22	0.27	0.54	.62	0.14	.82	0.24 (26.6)
Und./Low	34	0.14	0.20	.49			
Und./Comp.	31	0.14	0.32	.67	-0.11	.82	-0.23 (51.0)
Und./Chain	25	0.25	0.37	.50			
* $p < .05$, ** $p < .01$, *** $p < .001$							

 $\overline{\delta}$: average of mean wager shift over *n* groups $\Delta \overline{\delta}$: diff. in $\overline{\delta}$ between conditions

- Favorite groups show risky shift, underdog ones do not - Inconsistent with informational and normative theories
- High disagreement groups show greater shift than low
- Complete networks show greater shift than chains

RIA & Issue Substitution Theory

- Distinction between policy (opinion) and rhetorical issue used to discuss policy
- Expect rhetorical issue to often be concave function of policy
- Rhetorically-Induced Asymmetry: Concave relationship causes F2 to be closer to F3 than to F1 on rhetorical axis even though they are equally spaced on policy axis
- More extreme pair reaches agreement

- Rhetorically-Proximate Majority (RPM) forms at F2, F3 average policy - Minority yields to majority to reach consensus at RPM policy
- Final policy more extreme than initial mean \implies group polarization!
- Issue substitution shifts reference point
 - U group on more linear part of curve; weaker RIA implies less polarization
 - Can cause people on same policy side to be on different sides of rhetorical issue (U1 vs. U2, U3)

Theory in Experimental Context

- Correct rhetorical issue is who will win against spread
- Heuristic rhetorical issue is who will win game
- Claim that heuristic issue is substituted for correct issue
- Attribute substitution
- Both rhetorical issues are concave function of wager
- Due to risk aversion
- Have different reference points
 - Policy at which probability = 0.5

Favorite Spread

Subjective probability curves (spread=5)

Bets on underdog Bets on favorite

Opinion Network Modeling

- Models seek to predict how opinions change given initial opinions and network of influence between people
- e.g., DeGroot, Friedkin-Johnsen, Consensus Protocol, Bounded Confidence
- Assuming extremists are more resistant to persuasion is standard approach to group polarization
 - Influence increases with position extremity
- Needed because mean remains constant for symmetric influence in most models
- Cannot account for differential risky shifts in experiment

ASC Model

 x_i : opinion of node i $\rho(x_i)$: rhetorical issue position κ_{ii} : coupling strength from $j \rightarrow i$ λ_i : latitude of acceptance (LOA) λ_{min} : minimum LOA

 $\Delta \rho_{ii} = \rho(x_i) - \rho(x_i)$

 $x_i(t+1) - x_i(t) = \sum_{i=1}^{N} w_{ij}(x_j(t) - x_i(t)), \quad \sum_{i=1}^{N} w_{ij} = 1$

- Accept message as persuasive
- Acceptance probability falls off rapidly beyond uncertainty range (LOA)
- Depends directly on rhetorical issue position
- Shift opinion in proportion to opinion difference
- Constrict LOA if message originates from within LOA
- Agreement from others solidifies position
- Uncertainty reduction dynamics enables proximate majorities to form and hold their position

Models vs. Data

- Simulation conducted using actual spreads and wagers • Complete weights equal; middle node in chain given double weight
- Round simulation value up to nearest whole dollar
- 1 free parameter for RPM model, 3 for ASC
- Fit to minimize total χ^2 over both networks

Qualitative Agreement

- Only favorite side shows polarization
- Polarization increases with disagreement
- Complete shows greater polarization than chain

Quantitative Agreement

- RPM model passes χ^2 goodness of fit test: Q=.61
- ASC model passes: Q=.30

Potential Applications

- Small group decision making
- Political leadership, judicial councils, juries, intelligence analysis, forecasting
- Public opinion
- Extremism, divergent polarization, discussion networks, citizen deliberation